article ARTICLE
article4 min read

Applications Of Nanotechnology In Daily Life

Improved Transportation:
Today, most airplanes are made from metal despite the fact that diamond has a strengthto-weight ratio over 50 times that of aerospace aluminum. Diamond is expensive, we can't make it in the shapes we want, and it shatters. Nanotechnology will let us inexpensively make shatterproof diamond (with a structure that might resemble diamond fibers) in exactly the shapes we want. This would let us make a Boeing 747 whose unloaded weight was 50 times lighter but just as strong.

Today, travel in space is very expensive and reserved for an elite few. Nanotechnology will dramatically reduce the costs and increase the capabilities of space ships and space flight. The strength-to-weight ratio and the cost of components are absolutely critical to the performance and economy of space ships: with nanotechnology, both of these parameters will be improved. Beyond inexpensively providing remarkably light and strong materials for space ships, nanotechnology will also provide extremely powerful computers with which to guide both those ships and a wide range of other activities in space.

Atom Computers:
Today, computer chips are made using lithography literally, "stone writing " If the computer hardware revolution is to continue at its current pace, in a decade or so we'll have to move beyond lithography to some new post lithographic manufacturing technology. Ultimately, each logic element will be made from just a few atoms.

Designs for computer gates with less than 1,000 atoms have already been proposed — but each atom in such a small device has to be in exactly the right place. To economically build and interconnect trillions upon trillions of such small and precise devices in a complex three dimensional pattern we'll need a manufacturing technology well beyond today's lithography: we'll need nanotechnology.
With it, we should be able to build mass storage devices that can store more than a hundred billion billion bytes in a volume the size of a sugar cube; RAM that can store a mere billion billion bytes in such a volume; and massively parallel computers of the same size that can deliver a billion billion instructions per second.

Military Applications :
Today, "smart" weapons are fairly big — we have the "smart bomb" but not the "smart bullet." In the future, even weapons as small as a single bullet could pack more computer power than the largest supercomputer in existence today, allowing them to perform real time image analysis of their surroundings and communicate with weapons tracking systems to acquire and navigate to targets with greater precision and control.

We'll also be able to build weapons both inexpensively and much more rapidly, at the same time taking full advantage of the remarkable materials properties of diamond. Rapid and inexpensive manufacture of great quantities of stronger more precise weapons guided by massively increased computational power will alter the way we fight wars. Changes of this magnitude could destabilize existing power structures in unpredictable ways.

Solar Energy :
Nanotechnology will cut costs both of the solar cells and the equipment needed to deploy them, making solar power economical. In this application we need not make new or technically superior solar cells. making inexpensively what we already know how to make expensively would move solar power into the mainstream.

Medical Uses:
It is not modern medicine that does the healing, but the cells themselves: we are but onlookers. If we had surgical tools that were molecular both in their size and precision, we could develop a medical technology that for the first time would let us directly heal the injuries at the molecular and cellular level that are the root causes of disease and ill health. With the precision of drugs combined with the intelligent guidance of the surgeon's scalpel, we can expect a quantum leap in our medical capabilities.

Groups

0
  •  Inspiring
  • comment_icon  Comment